67 research outputs found

    Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.

    Get PDF
    Nitrogen fixation, the reaction that transforms atmospheric nitrogen into bioavailable ammonia and is responsible for the supply of nitrogen to Earth's ecosystems, is mediated by the enzyme nitrogenase. This reaction requires molybdenum (Mo) or vanadium (V) in addition to iron (Fe) (refs 1,2). Therefore, the availability of these trace metals may control the Earth's nitrogen cycle 3,4 . Many bacteria release strong iron-binding compounds (siderophores) for iron acquisition In metal-replete diazotrophic cultures, the gram-negative soil bacterium Azotobacter vinelandii expresses the Mo nitrogenase, which is most efficient, preferentially to the V nitrogenase or the Fe-only nitrogenase 1 and its growth can be limited by Fe, Mo or V Under our culture conditions, A. vinelandii produces various types of siderophore. The monocatechol 2,3-dihydroxybenzoic acid (DHBA) and the tris(catechol) protochelin are produced in higher concentrations than the bis(catechol) azotochelin Whereas the metal affinity of DHBA is relatively poor 13 , protochelin and azotochelin are strong complexing agents for Fe(III), molybdate and vanadate. For example, azotochelin (LH 5 ) reacts with molybdate to form a 1:1 complex with Mo(VI) (LH (ref. 14). As revealed by mass spectrometry, the reaction of molybdate with protochelin also yields a 1:1 complex (Mo-protochelin), with a structure probably similar to that of Mo-azotochelin 15 To determine whether protochelin and azotochelin actually complex Mo and V in the culture medium, we used a high-performance liquid chromatograhy (HPLC) separation coupled to inductively coupled plasma mass spectrometry (ICP-MS) analysis of collected fractions to quantify the catechols and catechol-metal (Fe, Mo, V) −6 M), we accounted for 80% of the Mo originally present in the medium in the form of the Mo-protochelin comple

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic

    Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Get PDF
    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from similar to 25 degrees N to 20 degrees S and compare the results with those from Atlantic meridional transects (similar to 50 degrees N to 50 degrees S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 mu mol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain similar to 10% of primary production in both the western tropical Pacific

    Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee

    Genetic indicators of iron limitation in wild populations of \u3cem\u3eThalassiosira oceanica\u3c/em\u3e from the northeast Pacific Ocean

    Get PDF
    Assessing the iron (Fe) nutritional status of natural diatom populations has proven challenging as physiological and molecular responses can differ in diatoms of the same genus. We evaluated expression of genes encoding flavodoxin (FLDA1) and an Fe-starvation induced protein (ISIP3) as indicators of Fe limitation in the marine diatom Thalassiosira oceanica. The specificity of the response to Fe limitation was tested in cultures grown under Fe- and macronutrient-deficient conditions, as well as throughout the diurnal light cycle. Both genes showed a robust and specific response to Fe limitation in laboratory cultures and were detected in small volume samples collected from the northeast Pacific, demonstrating the sensitivity of this method. Overall, FLDA1 and ISIP3 expression was inversely related to Fe concentrations and offered insight into the Fe nutritional health of T. oceanica in the field. As T. oceanica is a species tolerant to low Fe, indications of Fe limitation in T. oceanica populations may serve as a proxy for severe Fe stress in the overall diatom community. At two shallow coastal locations, FLD1A and ISIP3 expression revealed Fe stress in areas where dissolved Fe concentrations were high, demonstrating that this approach may be powerful for identifying regions where Fe supply may not be biologically available

    The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Publication of the first diatom genome, that of <it>Thalassiosira pseudonana</it>, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated <it>T. pseudonana </it>as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world's oceans.</p> <p>Results</p> <p>The natural distribution of <it>T. pseudonana </it>spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) <it>T. pseudonana </it>marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, <it>T. pseudonana </it>is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of <it>T. pseudonana </it>and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that <it>T. pseudonana </it>is more appropriately classified by its original name, <it>Cyclotella nana</it>. <it>Cyclotella </it>contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of <it>T. pseudonana.</it></p> <p>Conclusions</p> <p>The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of <it>T. pseudonana</it>, and the genes underlying those traits, might differ from those of strictly marine diatoms. The freshwater ancestry of <it>T. pseudonana </it>might therefore confound generalizations about the physiological and metabolic properties of marine diatoms. The freshwater component of <it>T. pseudonana</it>'s history merits careful consideration in the interpretation of experimental data collected for this important model species.</p

    A re-evaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean

    Get PDF
    We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr-1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs

    Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic

    Get PDF
    Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean
    corecore